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Abstract. Free fall is commonly discussed as an example of the equivalence

principle, in the context of a homogeneous gravitational field, which is a reasonable

approximation for small test masses falling moderate distances. Newton’s law of gravity

provides a generalisation to larger distances, and also brings in an inhomogeneity in

the gravitational field. In addition, Newton’s third law of action and reaction causes

the Earth to accelerate towards the falling object, bringing in a mass dependence in

the time required for an object to reach ground - in spite of the equivalence between

inertial and gravitational mass. These aspects are rarely discussed in textbooks when

the motion of everyday objects are discussed. Although these effects are extremely

small, it may still be important for teachers to make assumptions and approximations

explicit, to be aware of small corrections, and also to be prepared to estimate their

size. Even if the corrections are not part of regular teaching, some students may reflect

on them, and their questions deserve to be taken seriously.

(This is an author-created, un-copyedited version of an article published in Physics

Education 52 (6) 2017. IOP Publishing Ltd is not responsible for any errors or

omissions in this version of the manuscript or any version derived from it. The Version

of Record is available online at https://doi.org/10.1088/1361-6552/aa5e38)

1. Introduction

Physics teaching - in schools and universities - is full of assumptions and simplifications

that vary between contexts, but are often not discussed and made explicit. Going

between different sets of tacitly agreed rules can be seen as ”games physicists play”

This can be confusing for students, who may perceive contradictions unless the relations

between them and reason for approximations made in different contexts are discussed.

Redish [1] notes that ”Knowing what to ignore is an important part of learning to

think about science, and it should not be treated as trivial”. This paper addresses the

negligibly small effect on the motion of the Earth by a falling object, and was prompted

by a recent paper by Spallicci and van Putten [2]. The influence of air, which is the

most obvious effect influencing the time for an object to reach ground [3], will not be
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discussed in this paper, nor will other observable effects on the fall, such as the influence

of the rotation of the Earth on falling objects [4, 5].

Free fall is commonly introduced in terms of acceleration of gravity g, which could

be seen as describing a homogeneous gravitational field. The same holds for other

textbook discussions about the motion of everyday objects, and even discussions about

Newton’s law of action and reaction often fail to discuss explicitly the gravitational force

from an object acting on the earth.

A homogeneous gravitational field is a very good approximation for small test

masses falling moderate distances, and is sufficient for discussions of the challenge to

the everyday experience of light objects falling slower that heavier ones. Newton’s law

of gravity provides a generalisation to larger distances, where g is replaced by GM/r2.

The law of gravity also brings in an inhomogeneity in the gravitational field, causing e.g.

tidal forces on the Earth, but also on astronauts on the space station. The textbook

connection between the descriptions is typically limited to applying Newton’s law of

gravity to calculate a value for g = GM/R2 at the surface of the Earth with mass M

and radius R.

The effect of the Earth’s rotation on the shape of the earth was discussed by Newton

in his Principia [6], and students usually know that the radius of the Earth is slightly

larger if measured at the equator than at the poles, and that the rotation leads to small

deviations in the values for g.

What seems not to be discussed at all in most textbooks is the observation that

Newton’s third law of action and reaction causes the Earth to accelerate towards the

falling object, bringing in a mass dependence in the time required for an object to reach

ground (figure 1). The effect is, of course, very small, and can safely be neglected from

an experimental point of view. Nevertheless, it is a fundamental insight, that students

should be given the opportunity to share, and which brings coherence between areas of

physics that are traditionally taught separately. Lehavi and Galili [7] have interviewed a

number of teachers and students and found that the threshold to this insight was quite

high: ”The scheme of knowledge (a phenomenological primitive) of a motionless Earth

amazingly prevailed over the requirements of the Third Newton’s law.”

In their recent paper, Spallicci and van Putten [2] review how free fall is discussed

both in physics education literature and high-impact-factor journals. They go as far as

characterising teaching that fails to mention these approximations as ”sloppy teaching”

and ”brainwashing”. They also argue that students should learn e.g. that ”An observer

comoving with the center of mass of the system (stone plus Earth) would observe 1 kg

mass falling faster than a 2 kg mass.” (sic!) In this paper we discuss the free fall in a

Newtonian framework and arrive at a different conclusion.

2. Falling objects and the acceleration of the Earth

We consider now the acceleration of the Earth (mass Mand radius R) caused by the

interaction between a falling body with mass m at a distance h over the surface of the
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Figure 1. The Earth with mass M and radius R and a falling body with mass m at a

distance h over the surface of the Earth. The force between them, F = GmM/(R+h)2,

causes the centre of mass of the Earth to accelerate, whereas the joint centre of mass

does not. (Here, of course, we omit the interactions with sun, moon and other bodies.)

Earth (figure 1). From Newton’s law of gravity we know the size of the force between

the body and the Earth:

F = G
Mm

(R + h)2
(1)

Using Newton’s second law, we find the usual expression for the acceleration of the

falling body: am = −GM/(R+h)2, where the negative sign indicates the direction from

mass m towards the centre of the Earth. Similarly, the acceleration of the Earth becomes

aE = Gm/(R + h)2. Combining these expressions we find the relative acceleration

arel = am − aE = −G
M + m

(R + h)2
= −G

M(1 + m/M)

(R + h)2
. (2)

The acceleration of the Earth thus brings an extra factor (1 +m/M). This has the

remarkable consequence that the time to reach the ground depends on the mass of the

object. Relative to the Earth a heavier object would accelerate faster and thus hit the

ground after a shorter time. Of course, the large mass of the Earth (M ≈ 6 × 1024kg)

makes the ratio m/M far too small to have any practical consequences.

During the fall, the acceleration increases as the object approaches the Earth. This

increase will not be discussed below. It does not influence the arguments, since for any

distance between the object and the centre of the Earth, the relative acceleration carries

an extra factor (1 + m/M) due to the acceleration of the Earth.

However, in this discussion about the time for different masses to reach the ground,

the objects were considered to be dropped separately. What happens if both objects

are dropped simultaneously, next to each other?
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2.1. Two objects falling together

When evaluating small corrections, direct comparison between the corrections is often a

powerful method. The legendary Galileo experiment involves dropping two bodies with

different masses, m1 and m2 simultaneously from a tower. The interaction between the

Earth and each of the masses is given by Eq. (1). Neglecting the gravitational interaction

between the two bodies, we see that the accelerations of m1 and m2 are unchanged. (Also

neglected are the inhomogeneities of the gravitational field over the extension of these

bodies.) The force, FE, on the Earth is given by the sum of the forces, F1 and F2, from

the two masses, and we find

FE = F1 + F2 = G
Mm1

(R + h)2
+ G

Mm2

(R + h)2
= G

M(m1 + m2)

(R + h)2
(3)

The acceleration of the Earth thus becomes larger than for either of the masses falling

separately:

aE = G
(m1 + m2)

(R + h)2
(4)

Adding a second falling body leads to a larger acceleration relative to Earth for both

of the falling objects than for either falling individually, but the relative acceleration is

the same for both bodies.

arel = −G
M

(R + h)2
−G

m1 + m2

(R + h)2
= −G

M(1 + (m1 + m2)/M)

(R + h)2
(5)

Thus, a direct comparison of the simultaneous fall of two objects can not reveal that

the accelerations relative to the Earth would be different if the objects were dropped

individually.

3. Motion in the centre-of-mass system

In this work we let the imaginary observer remain in the joint centre-of-mass system of

the earth and the mass that is falling. We choose an observation point which is on the

surface of Piazza dei Miracoli, before the mass m is raised until it reaches the top of the

tower of Pisa, at a distance h above the surface of the Earth. The force responsible for

lifting the mass also pushes the Earth in the opposite direction, according to Newton’s

third law. Thus, when the mass m has moved a distance S in the centre-of-mass system,

the Earth with mass M has moved away from the joint centre of mass by the much

smaller distance ∆rM = (m/M)S, leaving the imaginary observer at this height over

the ground at Piazza dei Miracoli. (The small mass m is then a total of (1 + m/M)S

over the surface of the Earth.) The motion of the Earth also brings the top of the tower

closer to the joint centre of mass, and after the mass has moved by S, the remaining

distance to the top of the tower will be h− S −∆rM = h− S(1 +m/M). This analysis

shows that the mass m has reached the top of the tower after moving a mass-dependent

distance S = hM/(M + m) in the centre of mass system, while the Earth has moved

away the much shorter distance, ∆rM = hm/(M + m).
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Since moving a heavier body leads to a larger shift of the Earth relative to the centre

of mass, the heavier body needs to fall a shorter distance before hitting the earth. With

a distance (R + h) from the center of the earth, either mass, m1 or m2, will accelerate

by GM/(R + h)2 towards the centre of mass (and the contact point), but if they are

dropped separately, the heavier object moves a shorter distance than the lighter object

before hitting the ground at Piazza dei Miracoli.

Figure 2. Illustrations of ”planetary orbits” of an object with mass m, around a

heavier body with mass M . Their distances to the centre of mass are related as

rM = rm(m/M).

Corrections to a stationary Earth are typically discussed in connection with the

lunar motion around the Earth, (see e.g. [8]). Figure 2 shows a lighter object moving

in the field from heavier body. The two masses will always be on opposite sides of the

centre of mass, at distances related by

mrm = MrM . (6)

For the case of a body falling from a tower with elevation h above the surface of the

earth with radius R, we also find

rm + rM = R + h (7)

before the fall.

Spallicci and van Putten [2] choose to rewrite the gravitational field from the heavier

body in terms of coordinate relating to the joint centre-of-mass frame, which gives

am = − GM

(rm + rM)2
= − GM

r2m
(
1 + m

M

)2 ≈ −
GM

(
1 − 2 m

M

)
r2m

. (8)

The next terms in the series expansion can be neglected in view of the small

value of m/M . However at this stage, Spallicci and van Putten [2] (p 5) con-

tinue by comparing the falls of different masses for the same value of rm, which

leads them to the conclusion that heavier objects fall slower in the centre-of-mass

system. By leaving rm unchanged, their comparison involves drops from mass-

dependent heights of the tower, given by h(m) = h0(1 + m/(M + m)), which



Free fall and the equivalence principle revisited 6

increases with larger values for m. For an observer in the joint centre of

mass system, Spallicci and van Putten thus consider the case of larger masses

starting at larger distances from the Earth centre of mass, leading them to a

conclusion which differs from the common expression used above, i.e. am =

−GM/(R + h)2 at the beginning of the fall, whereas their expression for

the acceleration as seen from the Earth centre of mass agrees with the expression

in (2).

4. Should the equivalence principle be taught in school?

The equivalence between inertial and gravitational mass has many consequences that

may be surprising. Our work has shown that teachers and students alike are often

fascinated and intrigued by seeing lighter and heavier objects moving side by side.

In connection with a follow-up after and amusement park physics day, a teacher told

about parents complaining about the 10-year old pupils starting to climb bookshelves to

watch objects fall together - but the parental complaints were not about the climbing,

but about not knowing how to explain what happened. Other examples when mass

does not influence motion are pendulum motion [9], amusement park chain flyer rides

[10, 11], liquids in accelerated motion [9, 12, 13] and even objects sliding or rolling down

an inclined plane [3, 14]. These examples challenge the very common expectations that

heavier objects will, e.g., fall, roll, swing or slide faster.

The fascination in connection with these investigations can be a way to invite

teachers (and their students) to go beyond inserting numbers in formulæ, and to take a

closer look into the relevant equations and get a glimpse of the more general principle

of the equivalence between gravitational and inertial mass.

Spallicci and van Putten [2] argue in their paper that the discussions of free fall

and the equivalence principle should always be accompanied by discussions about effect

of the motion of the Earth. However, in our work we have found that children can be

fascinated by consequences of the equivalence between inertial and gravitational mass

long before they are ready for the mathematical descriptions.

Physics teachers in higher education are likely to take the fact that all objects fall

equally fast to the ground (or would fall equally fast in vacuum) for granted, but may

not have to have reflected on the effect of Newton’s third law on the acceleration of

objects relative to the Earth. Having taught a number of large cohorts of bright and

curious engineering physics students at Chalmers university of technology, I have never

heard anyone bring up the question, and confess to not having thought about it until

very recently.

Estimating the sizes of small corrections is another game that physicists play, and

students may be exhilarated by being introduced to this game. Some students may start

this type of game by themselves, and risk encountering ridicule by teachers or peers

for considering unrealistic cases. Research about gifted children (see e.g. [15]) shows

that they are often bored and even vulnerable in school. This paper aims to prepare
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teachers to deal with unusual questions from gifted students with special interest, and

also provide examples that may feed curiosity.
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