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Abstract. This paper focuses on an amusement ride involving rotations around three

axes, which offers a large-scale illustration for the study of dynamics in three dimen-

sions. The forces on the rider can be measured with comoving accelerometers. As a

first approximation, the different motions can be treated separately, but the combina-

tion of rotations is found to lead to a relatively large Coriolis effect. A mathematical

description of the motion automatically combines all the different effects and offers a

useful programming exercise.
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1. Introduction

Motion in three dimensions is common in engineering applications. Describing three-

dimensional motion including combinations of acceleration and rotation is a challenge

where mathematics plays a central role. For several years, I had the privilege of running

problem-solving classes for the mechanics courses in the spring for first-year engineering

physics students, who used the textbooks by Meriam and Kraige [1]. For dynamics

problems with rotations in three dimensions around several axes, intuition based on

everyday experiences is of little help. As the course progressed, I observed how students,

one by one, learned to trust the mathematics and displayed happy confidence when

they were able to solve these challenging problems. As students struggled to visualise

generalised 3D motion, including rotating arms, links, shafts, cranks and disks, I wished

I had access to real-life concrete examples. The Star Shape ride Mechanica (figure 1),

which opened at Liseberg in 2015 would have been an excellent example to follow the

study of rotating pendulum rides, [2, 3].
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Today’s smartphones include 3D accelerometers and gyros, giving students easy

ways to measure acceleration and rotation, using e.g. the app Physics Toolbox Roller

Coaster [4, 5] or PhyPhox [6, 7]. The interpretation of the data offers good practice in

identifying coordinate axes [2, 3, 8].

Figure 1. The Star Shape ride Mechanica at Liseberg. When the ride is in motion

the 12 m main arm rotates a full turn in 8 s around the X axis. At the same time the

star, with a radius of 4 m, rotates a full turn in 10 s around the main arm. Each of the

gondolas in the star seats 5 guests, and can rotate freely around its axis.

2. The Star Shape Ride Mechanica - combining rotations around three axes

Figure 1 shows the Star Shape ride from Zierer [9], which features rotations around three

axes. After a few smaller oscillations the star reaches the top. The ride then continues

with three full turns, each taking about T = 8 s, moving the center of the star in a

large circle with radius R = 12 m around a horizontal axis (X), while the star rotates

slowly (Tstar ≈ 10 s per turn) around the main arm. The motion stops for a while in

the highest point, where the star changes its direction of motion. The main arm then

makes a few full turns in the other direction. The gondolas of each arm can swing freely

throughout the ride. Describing the changing location of one of the riders while the

main arm makes full turns is a suitable programming exercise.

In addition to a mathematical description of the motion in a fixed coordinate

system, we also need to consider the force from the ride on the rider, given by m(a−g),
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Figure 2. The comoving coordinate system used to describe biomechanical effect

on riders. The vertical coordinate points along the spine towards the head. The

longitudinal coordinate points in the forward direction and the lateral coordinate to

the left.

since it needs to compensate for gravity, while also providing the force required for

the acceleration. Biomechanical effects are traditionally expressed in a body-fixed

coordinate system, which follows the rotation of the body, as shown in figure 2. In this

rider-based coordinate system, ”vertical” denotes the direction along the spine towards

the head, ”longitudinal” is in the forward direction and the ”lateral” direction points

to the left. Limits for the biomechanical forces in different directions were discussed

in earlier work (e.g. [10]). These co-moving coordinates are also used for data from

electronic accelerometers taken along on a ride.

Figure 3 shows accelerometer data collected during a ride in one of the seats furthest

away from the centre of the star using a Wireless Dynamic Sensor System (WDSS) [11].

3. Mathematical description of the motion

3.1. The main rotation

The location R of the centre of the star can be defined in the stationary coordinate

system, where the Z axis is vertical and the rotation of the main arm is around the

X-axis, as shown in figure 1. A first step is to consider the main rotation, introducing

an angular velocity Ω (figure 4), treated as constant when the ride is in motion.

We also introduce an angle θ = Ωt to describe the orientation of the main arm

at time t (figure 5). If we define the angle θ to be zero when the star is in the lowest

position the coordinates of the centre of the star are given by

RX = 0

RY = R sin θ

RZ = −R cos θ
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Figure 3. Accelerometer data for a rider in one of the outer seats of the Star Shape

ride Mechanica collected with the WDSS sensor system [11]. The sensor was carried

in a vest on the body. The data shows the components of the vector (a− g)/|g| for

the three axes in the coordinate system of the rider, defined in figure 2. The final

graph shows the elevation obtained from the WDSS (which converts the change in air

pressure to an approximate value for elevation, leading to a lack of precision when the

ride is in motion).

The location of the centre of the star can then be written in a number of representations,

e.g. R = RXi + RY j + RZk = (RX , RY , RZ) = R(0, sin θ,− cos θ), where i, j and k are

the unit vectors in the fixed coordinate system defined in figure 1. We may also introduce

a unit vector eR = (0, sin θ,− cos θ) pointing in the direction of R.

For a period T = 8 s, the angular velocity is Ω = 2π/T ≈ 0.79 rad/s. The velocity,

vc, and acceleration, ac, of the centre of the star can be written as

vc = RΩ(0, cos θ, sin θ)

ac = −RΩ2(0, sin θ,− cos θ) = −Ω2R = −RΩ2eR.

giving a speed vc = RΩ ≈ 9 m/s for R = 12 m and a centripetal acceleration with the

size ac = RΩ2 ≈ 0.75g.

Figure 4 illustrates the centripetal acceleration due to the main rotation. For

riders close to the centre of the star, the description above gives a relatively good
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Figure 4. The Star shape ride viewed from the side. The arrows mark the centripetal

acceleration due to the main rotation Ω, for a few different rider positions.

Figure 5. The location r of a rider is expressed as a sum of the vector R which gives

the position of the centre of the star, and the vector r′ which gives the position of the

rider relative to the centre of the star. The main arm R rotates around the X axis

with an angular velocity Ω, while the star rotates with an angular velocity ω around

the main arm.

approximation. Below, we consider additional effects arising due to the rotation of the

star, where the rider can be seated up to 4 m from the center.

3.2. Motion within the plane of the star

Figure 5 shows how the location r of a rider can be written as

r = R + r′



Mathematics, measurement and experience of rotations around 3 axes 6

Figure 6. Coordinate system and centripetal accelerations in the plane of the star.

The rotation of the star leads to an acceleration towards the centre of the star

(shown in light blue arrows), of about 0.16 g for a rider at the maximum distance.

The main rotation is around the X axis, which coincides with the x′ axis, and only

causes centripetal acceleration components orthogonal to that axis. The component

of the centripetal acceleration in the plane of the star due to the main rotation is

dΩ2 sinφ ≈ 0.25 g sinφ and is shown by (yellow) arrows pointing up or down in the

figure to the right (i.e along the y′ axis).

where the vector R gives the position of the centre of the star as discussed above, and

the vector r′ which gives the position of the rider relative to the centre of the star:

r′ = x′e′x + y′e′y + z′e′z. (1)

The axes of the coordinate system of plane of the star are chosen so that the z′ axis

points towards the center of the ride along the main arm and the x′ and X axes coincide

(figures 6 and 7). Thus the direction of the x′ axis does not change during the motion.

The position of the rider within the plane of the star can be expressed in terms of

a distance, d ≤ 4m, from the centre of the star and an angle, φ, which changes as the

star rotates.

x′ = d cosφ

y′ = d sinφ

z′ = 0

The location, r′, within the plane of the star can also be expressed in terms of polar

coordinates as

r′ = d(cosφ e′x + sinφ e′y) = de′r (2)

If the star rotates the with an angular velocity ω, the angle φ can be written as

φ = φ0 + ωt. If the star makes a full turn in Tstar = 10 s, the corresponding angular

velocity is given by ω = 2π/Tstar ≈ 0.63rad/s.

The velocity within the plane of the star can be written

v′ = v′(− sinφe′x + cosφe′y) = v′e′φ (3)
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where the speed is given by v′ = dω. Similarly, the acceleration due to the rotation of

the star can be written as

a′
c = −r′ω2 = −dω2e′r = −dω2(cosφ e′x + sinφ e′y). (4)

For riders seated in the outer part of a gondola, a′c ≈ 0.16 g.

Figure 6 illustrates this centripetal acceleration, together with the components in

the plane of the star of the centripetal acceleration due to the main rotation, which can

reach dΩ2 ≈ 0.25g.

Figure 7. Rotation of the coordinate system of the star.

3.3. Rotating coordinate axes

The main rotation leads to a rotation of the plane of the star. The coordinate system

x′y′z′ can be expressed in terms of fixed coordinate system as

e′x = i

e′y = cos θ j + sin θ k

e′z = − sin θ j + cos θ k

The position of the rider within the plane of the star can be written in terms of comoving

coordinate axes e′r and e′φ, where e′r points out from the center of the star towards the

rider and e′φ points in the direction of motion, as introduced in the equations (2) and

(3).

e′r = cosφ i + sinφ cos θ j + sinφ sin θ k (5)

e′φ = − sinφ i + cosφ cos θ j + cosφ sin θ k (6)

Using these coordinate axes, the location of a rider in the star, r = r′ + R, can be

expressed in the fixed coordinate system, giving

xs = d cosφ (7)

ys = d sinφ cos θ +R sin θ (8)

zs = d sinφ sin θ −R cos θ (9)
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3.4. Velocity and acceleration in the combined motion

Assuming constant angular velocities, the angles can be written as θ = Ωt and

φ = ωt + φ0. Taking the time derivative of the expressions in (7)-(9) then gives the

components of the velocity

vx = −dω sinφ

vy = d(ω cosφ cos θ − Ω sinφ sin θ) +RΩ cos θ

vz = d(ω cosφ sin θ + Ω sinφ cos θ) +RΩ sin θ.

Similarly, the time derivative of the velocity components gives expressions for the

acceleration

ax = −dω2 cosφ = −xω2

ay = d(−ω2 sinφ cos θ − Ω2 sinφ cos θ − 2ωΩ cosφ sin θ)−RΩ2 sin θ

az = d(−ω2 sinφ sin θ − Ω2 sinφ sin θ + 2ωΩ cosφ cos θ) +RΩ2 cos θ.

The acceleration vector can also be expressed as

a = −RΩ2 − r′ω2 + 2Ω× v′. (10)

The additional term is the Coriolis effect, which appears for motion within a rotating

coordinate system and is ortogonal to the rotation axis and to the relative velocity.

Inserting numerical values shows that this case, the Coriolis effect can contribute up to

0.40g in the positive or negative z′ direction.

Figure 8. The motion of a rider passing the lowest point of the ride, while the star

rotates around the main arm and the gondola swings back and forth. The arrows mark

the ”up” direction for the rider, corresponding to the ”vertical” axis in figure 2. (The

time interval between the screen shots is 0.4 s.)

3.5. Freely rotating gondola

The final rotation involves the gondolas which can rotate freely around the arm of the

star. Figure 8 shows an example of their motion as the ride passes the lowest point.

As the ride stops at the top, the gondola continue to swing back and forth in

damped oscillations around the equilibrium orientation, as can be seen from the vertical

and longitudinal data in figure 3 (at about 60s− 75 s in the graph).
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Figure 9. Calculated values for the different components of the g factor. The first

graph shows the calculated vertical, lateral, and longitudinal components, as well as

size of the total g factor (dotted). (In the calculations, the rotation of the gondola is

omitted, and ”vertical” direction corresponds to the z′ axis and the longitudinal to the

direction of motion given by e′φ.) The second graph shows the elevation of the center

of the star (dotted), given by R cos θ, and of a rider at maximum distance from the

center of the rotating star (solid).

3.6. Forces on the rider

The total force on the rider can be expressed as mg + X = ma where X = m(a− g) is

the force from the ride in the fixed coordinate system. It is related to the components

of the acceleration as

Xx/m = ax

Xy/m = ay

Xz/m = g + az

where g = |g| ≈ 9.82m/s2. The ”G force” or ”g factor” can be defined as a

normalized force vector G = X/mg = (a− g)/g, which is independent of the mass

of the rider. For the rider, it is more interesting to know the forces in the coordinate

system moving together with the rider, which would also be the forces measured by a

comoving accelerometer.The lateral component is defined by the direction e′r in (6) as

Xlat = −X · er ′.
If we neglect the rotation of the gondola itself, the coordinate in the direction

of the motion within the star, v′, corresponds to the ”longitudinal” component, i.e.

Xlong = X · e′φ. Finally, the ”vertical” component is along the z′ axis, i.e. Xvert = X · e′z.
Figure 9 shows the result of the theoretical model with a rider at the maximum



Mathematics, measurement and experience of rotations around 3 axes 10

distance, 4m, from the center in a gondola starting with a phase φ = −90o at t = 0,

which can be compared to the experimental data in figure 3.

4. Challenging comparisons

Comparing amusement ride accelerometer data to calculated values can be challenging

on many levels. The manufacturer www site [9] only specifies number of riders, capacity

and outer dimensions which are not sufficient for physics assignments. Some data may

be obtained by measurements on-site, but more direct contact with the park can give

more precise dimensions. Due to safety considerations, prior arrangement should be also

made with the park before a sensor is brought on a ride. The axis orientation precision

is limited in how well the sensor is attached to the body of the rider - and rider motion

within the seat may change the orientation.

The data collected are often noisy, as seen from the graphs. Vibrations in the ride,

but often also small oscillations from the sensor itself contribute to the noise.

In the case of the Star Shape ride, the free rotation of the gondola includes an

element of motion which is not pre-determined. This complicates the comparison

between calculated and measured values. However, it is possible to compare g factors

for a few situations discussed below.

4.1. Gondola oscillations

The main rotation stops for a while in the highest point, offering a view of the gondola

oscillations, without the added complication of the changed direction of the gravitational

field relative to the gondola. Figure 10 shows details of the vertical and longitudinal

g factors during the oscillations at the top, as well as when the star passes the lowest

points. The period of oscillation is Tg ≈ 2 s at the top, as seen from the graph in

figure 10. This corresponds to a radius of gyration rg ≈ 1 m, which is the length of a

mathematical pendulum with the same period.

If α denotes the maximum angle between the acceleration of gravity and the vertical

axis of the rider the g factor in this ”vertical” direction varies between cosα and

(1 + 2(1 − cosα)) for a sensor placed at the distance rg, whereas the longitudinal g

factor vanishes, (see e.g. [3, 12]). However, the data shown in figures 3 and 10 were

collected with the sensor worn in a vest close to the ”heartline”, which is also close

to the axis for the gondola oscillations, as seen e.g. from the movie and photos at the

Zierer Star Shape www site [9]. For this case, the vertical g factor is instead expected

to vary between cosα and 1, whereas the longitudinal g factor varies between sinα and

− sinα, changing sign during the swinging to and fro. The longitudinal component of

the g factor gives the clearest indication of the gondola oscillations.

As the star passes the lowest point while the main arm rotates, the g factors related

to the oscillations of the gondola are increased by a factor of 1.75, due to the acceleration

of centre of the star (about 0.75g) which increases the apparent gravitational field,
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Figure 10. Vertical (red, solid) and longitudinal (green, dotted) g factors showing

the oscillations of gondola. The upper graph shows the oscillations as the star is in

the highest position, whereas the lower graph shows the oscillations as the star passes

the lowest point twice. The asymmetry in the vertical g factor arises from the sensor

leaning slightly backwards when carried on the author’s body.

(g−a). This is also expected to lead to a reduction of the oscillation period by a factor

of
√

1 + 0.75, giving an expected gondola oscillation period of 1.5 s in the lower part,

essentially confirmed by the data (figure 10). Also, the series of screen shots in figure 8

show that a half-period is slightly shorter than 0.8 s.

4.2. Lateral forces and the rotation of the star

Since the lateral force is not affected by the gondola oscillations, this comparison is

more direct than for the other components. The rotation of the star making a full turn

in 10 seconds leads to a centripetal acceleration, towards the centre of the star, which

points to the left of the rider, making a positive contribution of 0.16 to the lateral g

factor (dω2 ≈ 0.16 g). Depending on the position in the star, the main rotation can give

an additional positive contribution of up to 0.25, as shown in figure 6. When the star

passes the highest or lowest positions, the star is in a horizontal plane we expect lateral

(sideways) forces from the ride in the range 0.16g to 0.41 g.

Between the highest and lowest points, the star is, instead, in a completely vertical

plane (figure 6). The lateral force from the ride then also needs to compensate for the

the part of gravity that is not used for acceleration. For a rider in highest part of the
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star, the force required from the ride is mg(1 − 0.16 − 0.25) = 0.59mg, upward, and

out from the centre of the star. This points to the right of the rider, giving a negative

lateral g factor of −0.59.

In the lowest part of the star, the force from the ride is still upwards, but to the

centre of the star and to the left of the rider. The force must compensate for gravity

and also supply the force for the acceleration of 0.41g. The sideways force needed from

the ride is then 1.41mg, pointing to the left of the rider, giving a lateral g factor of 1.41.

Both the theoretical and measured lateral g factors, in figures 9 and 3, fall between

−0.59 and 1.41 throughout the ride.

4.3. Vertical and longitudinal forces in the highest and lowest points

A 12 m long arm rotating uniformly at with a period of 8 s would lead to a centripetal

acceleration of 0.75g at the centre of the star. As the star passes the lowest point, an

upward force of mg(1 + 0.75) from the ride is needed to provide this acceleration for

a rider. However, depending on the position in the rotating star, the Coriolis effect

implies an upward or downward acceleration of up to 0.40g. We would thus expect a

maximum upward force on the rider of (1.75 + 0.40)mg = 2.15mg, and a minimum

force of 1.35mg or a vertical g factor in the highest point to be between 1.35 and 2.15.

In the highest point an upward force from the rid of 0.25mg added to the force

of gravity would allow for a downward acceleration of 0.75 g. The Coriolis effect can

change the required force to values between 0.65mg upward and 0.15mg downwards.

In the calculations, the rider is assumed to be oriented with the head pointing down,

which inverts the sign for the vertical g factor, which is then expected to be between

−0.65 and +0.15, which agrees well with the theoretical values in figure 9.

Due to the rotation of the gondola, this ”vertical” component of the g factor will

be distributed over the vertical and longitudinal components in the measured data. In

figure 10, we note how the maximum values of the longitudinal g factor is comparable

to the maximum values for the vertical g factor.

The maximum total g factor is slightly larger than the values 2.15 expected from

the calculations, as seen from the graphs in figures 3 and in more detail in figure 10.

This discrepancy can be understood by noting the that the rotation of the main arm is

slightly faster when the star is in the lower half of the rotation. This can be seen from

a video of the movie, but also from the measured elevation data.

4.4. Longitudinal forces for the star in a vertical plane

In the theoretical calculations, the longitudinal direction coincides with the e′φ axis in

the plane of the star. Intuitively, we might expect the longitudinal force on the rider

to be mg cosφ when the star is in a vertical plane, with the largest values, ±mg, in

situations where the rider sits in a gondola aligned with the horizontal x′ axis. However,

the calculated graphs in figure 9 show values slightly outside these expected limits.

Mathematics can beat intuition!
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To understand the small deviations, we need to consider the centripetal acceleration

due to the main rotation, illustrated in figure 6. If the rider is located at an angle φ

from the horizontal axis, the contribution to the lateral g factor is −dΩ2 sinφ sinφ/g

and to the longitudinal component −dΩ2 sinφ cosφ/g. The total longitudinal g factor is

then cosφ(1−dΩ2 sinφ/g), which can be slightly larger than 1 for small negative angles

φ. Similarly, for angles just over 180o, the longitudinal g factor can have a slightly more

negative value than −1.

5. Discussion

Intuition often fails in the study of forces in three dimensional motion involving rotation.

In this paper, we have considered forces on a rider, by adding contributions resulting

from the different centripetal accelerations, as well as the Coriolis effect. The values are

first compared with theoretical results, where the effect of the rotating gondola has been

neglected. The mathematical description automatically includes complex combinations

of the different contributions to the force from the ride on the rider.

Comparisons between theoretical and experimental values are complicated by the

pendulum motion of the gondola. Since the sensor is placed close to the gondola axis,

additional forces can be neglected, but the rotation of the gondola leads to a mixing of

vertical and longitudinal components of force on the rider, and only maximum values

can be compared directly. The measured data show that forces in the lowest point

can reach higher values than expected. These can be accounted for by noting that the

rotation is faster when the star is closer to the ground, as revealed by elevation data in

figure 3. The uneven rotation can also be seen in the accompanying video abstract.

The example of the Star Shape ride shows how data from the ride can be compared

with theoretical expectations at different degrees of complexity. During introductory

courses, looking into one motion at a time, will be sufficiently challenging. Many

other rides offer more easily accessible modelling examples, such as roller coaster loops

[13, 14, 15] and brakes [17]. Amusement park visits also offer a wide range of other

activities that support conceptual understanding in physics and engineering education

[18, 19, 20, 21, 22].

When students have learned to work with rotations in three dimensions and

encountered transformations between different coordinate systems, writing a program

small program to model the position in the Star Shape ride, as well as the forces on

the rider, gives useful practice. The ride considered in this paper offers an illustration

of the power of mathematics to include the different contributions, without having to

consider explicitly the vector addition of the different force contributions.
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