lu.se

Denna sida på svenska This page in English

Acceleration i berg- och dalbanor

Centripetalacceleration

De största accelerationerna i en nöjespark är centripetalaccelerationer: I botten på en gunga, på krönet eller i dalen av en berg- och dalbana har farten maximum eller mininum medan hastighetens riktning ändras. Att detta kräver en kraft - en centripetalkraft - är tydligt för den som åker.

 

 

Den första bilden ovan är sedd uppifrån och visar acceleration i ett horisontalplan, medan de två övriga är sedda från sidan och visar vertikal acceleration när man åker i ett krön eller i en dal.

Berg- och dalbanespår är kurvor i 3 dimensioner. Spåren i tidiga Schwarzkopf-banor böjdes så att de har väldefinierad krökningsradie i horisontal- och vertikalled. Den anges för varje stolpe eller spårsegment. För stolparna anges också höjd och spårets lutning i sidled och framåt/bakåt. Acceleration och krafterna kan då räknas ut om man vet farten som ofta kan uppskattas ur uttrycket
    v2 ≈ 2gΔH

För att få fram totala kraften från spåret använder man kraftekvationen. Vektorsumman av alla krafter (tyngdkraften + en okänd kraft, X, från spåret) skall vara lika stor som massan gånger vektorsumman av alla accelerationer.

 

 

 

Bilden visar krafterna när man åker över ett litet krön. Hur ändras figuren om man åker genom en dal? Över ett krön där den vertikala centripetalaccelerationen är större än g?